Even-Odd Effect of ³⁵Cl Quadrupole Coupling Constants in Solid *n*-Alkylammonium Chlorides ($C_5 - C_{10}$)

H. Honda

Graduate School of Integrated Science, Yokohama City University, Kanazawa-ku, Yokohama, 236-0027, Japan

Reprint requests to Dr. H. H.; E-mail: hhonda@yokohama-cu.ac.jp

Z. Naturforsch. **58a**, 623 – 630 (2003); received June 17, 2003

even-odd effect. Point-charge calculation was employed to explain this effect, in which the geometrical parameters and electric charge distributions of the cations were estimated using the B3LYP/6-31G* and B3LYP/6-31+G** method, respectively. The results show that the double-layer width between the Cl⁻ ions at the 2a and 4f sites strongly contributes to the e^2Oah^{-1} value. Key words: 35Cl NMR Spectra; Theoretical Calculation of EFG; H-D Isotope Effect on Hydrogen

 35 Cl NMR spectra were measured using the highest-temperature solid phase of n-C_xH_(2x+1) NH₃Cl and n-C_xH_(2x+1)ND₃Cl (x = 5 – 10). The observed quadrupole coupling constants (e^2Qqh^{-1}) decreased upon heating in this phase, and significant frequency differences of ca. 20 – 30 kHz were detected between the -NH₃ and -ND₃ analogs. In the low-temperature range of this phase, the observed e^2Oah^{-1} values for x = 8.10 were larger than those for x = 5,7,9, which is attributable to the

Bonding; Even-Odd Effect.